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APPLICATIONS OF COMBLXRATORICS TO THE BUSY PERIOD IN SEVERAL QUEUEING MODELS

S.G. Mohanty and J.L. Jain

* Sumry

' Combinatorial methods are used to derive the distribution of

the busy period in a Markovian tandem queue and queues with finite ca-

pacity in five models each involving batches.

1. Introduction

Takdcs in his book (see Takacs(1967)) and many of his papers

. amply demonstrated his pioneering work on the application of combina-

torial methods for deriving the distribution of the busy period. He

(see Taka'cs (1962)) gave a new direction of approaching the problem

through the so-called urn problem (which is a generalization of the

ballot problem). The technique basically requires the following two

steps:

(i) Write down a finite set of relations in the form of inequalities and

equalities on a sequence of random variables which a busy period when suit-

ably conditioned must satisfy. The conditions are such that each sequence
m-

has the same weight (in terms of either probability mass or probability density).

(ii) Count the number of possibilities or find the measure of the set

satisfying the inequalities.

The random variables are in terms of the number of arrivals or

departures or the arrival or departure instants. The Markovian assumption

of either interarrival times or service times plays the central role in

*The author is on sabbatical leave from McMaster University and spending

* it at Stanford University.
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"' the combinatorial technique in the sense that it assures the requirement

of uniformity as suggested in (i) and thus leads to the enumeration

• % problem in (ii).

The purpose of this paper is to further explore the scope of

applications of the same technique. With this objective in mind, in

Section 2 we present three enumerative propositions which find

applications in the remaining part of the paper.

Although queueing network models abound in applications (such

as communication networks, computer time sharing and multiprogramming

systems) the study of such systems has not progressed at a pace comen-

surate with its inportance (see Jackson (1957), Jackson (1963),

Disney (1980)). In Section 3, we consider the simplest form of a queueing

network, viz., a Markovian queue in series (also called a tandem queue)

and obtain the joint distribution of the length of a busy period and the

number of arrivals.

Queues with finite capacity is rather common in practice. How-

ever, the literature on busy period with finite capacity is not large

(e.g. Cohen (1971), Enns (1969), Neuts (1964), Mohanty (1972),

Takics (1976)). The direct combinatorial approach worked well on de-

termining the distribution of a busy period with infinite capacity.

Never-the-less, it has limited success for queues with finite capacity

(Mohanty (1972)). Not surprisingly, most often the finite capacity case

is treated through the Laplace-Steiltjes transform (Cohen (1971),

Enns (1969), Takics (1976)) rather than the exact distribution with the

help of the combinatorial method because part (ii) evaluation in general

V. is not simple. However, the method can be applied to more situations

..than in the past and in Section 4 and Section 5 we obtain the disbribution

.* **>* .&- -

'+',,-,,,',;,,.:-,-,-.-.,- , ".-.-. .' . ',..-".. ... .'. .-. .' .."-.- "..-'.-.. . .i." .?.- .1-.- ..--, - ..-'... -".



- - ., -

-3-

of a busy period with finite capacity (i.e., fixed maximum queue length

or maximum work load) in four different models, each involving batches.

2. Some Auxiliary Combinatorial Results

In this section we present three combinatorial results each

of which is applied in the subsequent sections.

, Proposition 1. (Kreweras (1965), p. 35)

Let N(k; a, D) denote the number of k-dimensional lattice

paths from the point a- (al$...,ak) to the point b = (bl...,bk)

such that every lattice point (xl,...,xk) on the path satisfies the

condition x. > ... > xko Then

(I) N(k; a, b) [b - a]IlI cijl 1

k
where n] - i p and llcij l1 is the kxk determinant with

i-i kxk

(i,j)th element

ci
ij (b i - a i + j)

Kreweras' original result is in terms of Young chains which

when converted into lattice paths has the above interpretation.

Before stating the next proposition we need some definitions

and notations. Consider (k + l)-dimensional lattice paths from the

origin to the point (n0 , nl,...,n k). By the r(=(rl,...,rk))th level

we mean the set of points {(xo, n - rl,...,nk - rk): 0< x 0< nol.

J%
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Let
x(r) = no - min{x }  if the path reaches the rth level

0 0

and (x, n rl,..., - rk) is

a point on the path;

- 0 otherwise.

Clearly 0 < x(r) < no  and xQn - n . Denote by a(r_) and b(r)

the upper and lower restrictions at the rth level, by which we mean the

path at the rth level can pass only through points in the set

{(Xo0 nI - rll.-.,nk - rk): 0< b(s) < no 0 x° 0< a(r_) < no 0

The sets

A(n) {a(r): 0 < r < n

and

B(p)= {b(r): 0 < r < n)

are respectively called the upper and lower restrictions on the path. The

order relation x < y means x4 <- yi for each i. Note that a(r) and

b(r) are non-negative integers, and non-decreasing in each coordinate.

Let x a y mean xi < Yi for at least one i. For example,

the lexicographic ordering (Ul, ... ,Rd ) of the set {r: 0 < r < pj

k
such that d - T (ni + 1),u - and u n is an a ordering in

the sense that au...u. Remember that the sequence
=._

((0,0), (0,1), (1,0), (1,1), (2,0), (2,1)) is a lexicographic ordering

of vectors (r: (0,0) < r, < (2,1)

Proposition 2. (Handa and Mohanty (1979))

5Denote by gk(A(n)IB(n)) the number of paths with upper re-

striztion A(n) and lower restriction B(n). Let

.5- %
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a(a ( .((a.-nn i + )

- (Mx(a,o

and

k

i-I i'

Then gk(A(n)jB(R)) satisfies the recurrence relation

(2) - 1 -bn + gk(ACr) IB(rE)) 0
o <r <n n r

where

U6 -1 whenn 00 _

- 0 otherwise.

An explicit solution of (2) is the following:

' (3) gk(A(n) IB(n)) -(-i) i (+l)
d-(n - . j+l ) I (d- 1) x (d- 1)

k
where d - 1 (n + 1) and {Ul,...,J} n {r: 0 < r < n) such that

. i-1 .. .

• Oua0 ... zud = n.
. - -l_

The explicit expression (3) may be obtained by first using

Cramer's rule to the system (2) of linear equations and then simplifying it

For practical purpose, the lexicographic ordering of vectors is good

enough. It is easily seen that if we take (n, nl,...,n) as the origin09

", " *- '.. . " . ,- - . . .. -. -.. . . .. , .- . ,- 4,, ..- ', .- % ,, - - ,, ,_- -- ,
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and reverse the steps in the path, the upper and lower restrictions

respectively become

A'(n) - %-b(_ -r): 0 < r < n}

and I

a {n a (n-r): 0< r < n}.I 0 -Then we get an alternative expression for the same number of paths as

gk(A'(n) B'(n)). In our applications, the alternative expression is '

used.

Next we formulate a continuous analogue of Proposition 2 which

gives a generalization of Steck's result (1971). Though Steck has P

stated the result in terms of order statistics, its connection with

paths is explained in Mohanty (1979) chapters 2 and 4; Mohanty (1980).

In (k+l)-dimension with axes xo, xl,...x, consider paths (not

necessarily lattice paths) from the origin to (n, nl,...,nk) where

n is a non-negative real number and nl,... ,n are non-negative in-

tegers. In this case, a path is like a lattice path except that the

the number of units moved at any time on x -axis is a non-negative real

number. As before, we may define the level r, the upper restriction

A(np) and the lower restriction B(n). Here, we may remember that

a( ) and b(r) are non-negative real numbers. In the next assertion,

we adopt some of the earlier notations. P

Proposition 3. .

Let gk(A(n)IB(n)) be the measure of the set of paths with

upper restriction A(n) and lower restriction B(n). Then

k(A(n)IB(n) satisfies the recurrence relation

44 •

t' *. . . . .. . . . .. . ..*
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[n- r] (a(r) - b(n))+ r] ,

(4) 1 (-1) (n - Wg.(A(r) IB(r))
0<r<n k

where (x) = max(0,x). An explicit solution of (4) is given by

(5) A~n)I B (n))

[u -u]

= ( 1 1d_[n]l (a() -. +

(.+l -i (d-l) x (d-l)

The proof is inductive, follows the similar line as in

Proposition 2 and therefore is omitted. When k = 1, we get

n (a(r) - b(n))+ - r

(6) Z (-1)n -  (n - r)B = 6n
r=o

and

(7 = (a(ui) -b(u
(7) gl

(uj+l ui- n x n

(gl written for g (A(n)IB(n))).

In fact u r r - 1, r = l,...,n + 1 and g1  represents the integral

v v v
V1  V2  n

n
(8) f f f. dx .. ""x

Ul1 Y2 Yn n 1

where yi max(ui' xi-l (see Mohanty (1971)) such that

a(r - 1) vr and b(r) u r -l,...,n. Thus the determinant sol-r r

ution (7) of gl checks with the earlier one in Steck (1971) (see

. Mohanty (1979), page 56, Mohanty (1980)). Relation (6) which is needed

in the inductive proof follows easily from (7).

. ' -. . .. .- --



The remarks following Proposition 2 are all valid for

Proposition 3. For computational purpose, recurrence relations (2)

and (4) are often more useful than the explicit expressions (3) and (5).

3. A Tandem Queue

The queueing mo'del called Model I is described by the

following properties:

Model I.

(a) There are r service counters numbered 1 to r and each counter has

only one server. A customer arrives at the first service counter and

moves from the ith counter to the (i + l)st counter i = l,...,r - 1

for service. The service is completed just after the customer leaves

the rth counter.

(b) Customers are arriving in accordance to a Poisson process with

parameter A.

(c) Service times at the ith counter are i.i.d. exponential random

variables with parameter pit i =

(d) Service times at various counters are mutually independent and are

independent of arrival times.

The busy period ends when for the first time the first counter

is emt y while the other counters are busy and are never empty before.

" We are interested in ascertaining

G1 I G (1 ,...,jr; kl,.. .,k r; n; t) which represents the probability

that (i) there are initially J + 1 customers at the ith counter,

i - l,...,r; (ii) n customers have arrived during the busy period;

(iii) at the end of the busy period there are ki 1 + 1 customers

including one being served, left at the ith counter, i 2,...,r;

- -.., . .. .-. -. ... .- .- .' - . -... - . . .* * • . .". -°.
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(iv) the length of the busy period is <t.

Let the point of time when either there is an arrival or a

completion of a service be called an instant. Denote by a and
oj

1,...,r) the number of customers arrived at instant j and the

number of units served by the ith server at instant j respectively. Ob-

serve that a - 0 or 1, i - 0, l,...,r such that

r
I .. = 1. Let N + 1 be the total number of instants upto the end of
i=o

the busy period. Then the event in question with conditions (i), (ii)

and (iii) is equivalent to the following relations:

m in

i +  a > i = i,...r, M =

ZY~l

(9) 1 a n, Z a n + Jl +  aU,+H-I H-£i- £  i

fN+l i
I a n+ (I -k +k. + , i 2,...,r.
I - it t=l k t

Putting

mmJil"+r+ Z ai~ - ,c, i=0,1,..., r m ,i

Z a =x
1 r, r,im

and
r r

(Xo, x , ...... ,j ,O),V t t r
-o~~ ooI r t=z

we note that relations (9) become

x > x > ... > x m 0, ,...,N,
om - l..- . rm
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where

(XoN' 'lN,*,rN

with

r r i-i
x = Y j + n, x IN . J t + n, and XiN = XoN -= kt + 1,

t=1 t=l t 1

i = 2..r

The number of sequences ((Xom, xl ,...,Xr), m =

satisfying the condition Xom> X > ... > xrm m = 0,1,...,N is the

number N(r + 1; , ) of paths as in Proposition 1.

Taking the superposition of r + 1 Poisson processes into

consideration, one observes that there are

,r i r
nr(r + 1)n + jI + z Y (Jr - kt +  k + r -1 occurrences in the

i=2 t=l i--2

r
combined Poisson process with parameter X + E .Ii during the bus:;

period of length y and one occurrence at the end of the period (i.e., dur-

ing the interral (y, y + dy), dy -) 0). The probability of this event is

r r *
-y(X + E ii) (y(X + )

j J=l r
(10) e ((X + E Ii.)dy + ody).

n j=l

Given the above event, the probability for any sequence of arrivals and

completion of services at all counters during the busy period (i.e., any

sequence ((x, Xm,...,X), m = 01,1...,N subject to the condition

xom > ... > x rm, m 0,1,...,N) is

*4

4, " . . . . ." . . . . '  ° " "
I . .- "." ; . . ' " ' .. "' ''' ' " ." " '""" 7"''":": """ -. '_- : " : " " " /
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n+J~l -(Jr k) + kl + n + 1

n+j +1 r t(11) A = 0 p l  
- ) p+ki=2

where

PO A PIi
xor Pi .S+ E Xj + I

j=1  j=i

Thus combining these facts, we obtain

".-' ~ t -YCX + lpj (( +S) n *

(12) G1  N(r + 1; x ,  x )  e .. eYC +ZY)
"-0- __N A' (1L + E.1j) dy

~n
r

where Z refers to Z

° 11

~.. '-.

.. & .
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4. Markovian queues

We deal with two heterogeneous Markovian models involving

batches. With the aid of Proposition 2, the joint distribution of

several characteristics one of which is the maximum queue length during

the busy period is obtained for each model.

Model II.

The model is characterized by the following:

(a) Customers arrive at a counter from r sources in batches of size

ui from the ith source (i = 1,...,r) in accordance to the Poisson process

with parameter A..

(b) Customers are served in batches of size u and service times at

the counter are i.i.d. exponential random variables with parameter p.

(c) Service times are independent of arrival times from different

sources. Arrival times from different sources are also independent.

Without loss of generality, we will first treat the case

r - 2. Let G2 = G( + u; nl, n2 ; k, t) be the probability that a

busy period initiated by . + u customers, consists of ni batches
0

arriving from the ith source (i 1 1, 2) has a maximum queue length < k

and has length <t.

Let n0 + 1 be the number of batches served during the busy

period. Then

Unl + u n2 +

(13) n= FLl +u:2 2

[z] being the largest integer less than or equal to z. Assume that

k>u
-0

%
%A

* . * .. l- - c ' "-*** .-
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Let us define the (i,j)th arrival instant as that instant which is

either the ith arrival instant from the first source and j arrival

instants from the second source precede it or the jth arrival in-

stant from the second source and i arrival instants from the first

source precede it. Denote by X the number of departures after the
ij

(i,j)th arrival instant and before the next arrival instant. Also

use X to represent the number of departures between the
a-... 2

(nl, n2)th arrival instant and the end of the busy period. Then for a
a...,

busy period the following relations must be satisfied:

-i
(14) k+ iuI + ju2 < u X 1 x <u +ju+z

for i - 0, l,...,nl j 0, l,...,n 2 but (i,j) 0 (n1 ,n2 )

n2  n

and I 1 X =n +1.
0=0 a=O a , o

If we represent a departure by a unit on x -axis, an arrival from

source i on xi-axis (i - 1, 2), then the sequences of arrivals and

-. departures satisfying (14) correspond to the set of lattice paths from

(0, 0, 0) to (nO + 1, nl, n2) which do not cross the planes

(15) U - u x +

and

(16) u x uI x + u2 x2 + - k

except at the end when the plane (15) is crossed by a unit step on

x -axis. The number of such paths as given in Proposition 2 is
0

t ,: ... "' " ". - "- " " "'-v '-* " . " '" "-'". ".. . . . . . . . .. . . . . . . . . . . . . . . . . .-.-....- ".-.. .--.-. "-.. .- -.."
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g2 (An)IB(n)), where

iu + ju +
' a(ij) = rin(no, 1- 2 u )

0

and
2.-k + iu1 + u

b(ij) = max(O, u

S0, 1,...,n 1and j = 0, 1,...,n 2 .

Using an argument similar to the last part of the previous

section, we obtain

n +1 n n 2  t

(17) G2  p g2(A(n)I 0(n)) p po p 2  
f  B dy
0

for k > u and na given by (13)

where

"u 1 A2

2 + X2 1 2 + 2

and + )
.. 'B e(+1 2 Y ((B'I+X 2) Y+ +onl

V (n + +ny 2X1 +X)

When k < uo, the busy period terminates with one service and the ex-

pression is obvious.

For the general case, we may write

. (r) G2(2( + uo; nl, ...,nr; k, t) to represent the probability that a

,. busy period initiated by 2 + u customers consists of ni batches

arriving from the ith source, has a maximum queue length <k and has

length <t. The value of n becomes

.4
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'u.n. + Xi. 1

n = I 1.. 0 U
0

The expression for the generalized G2  is

n +1 r n t
,-.- (17) G2 (r) - gr(A(n)IB(n))Po0  (1 Pi ) f Bry

i-i 0

where

Isu +Z
i i[..,..a(s_ - min(n o 1 ]- )

0 U0

b(s) - max(o, C u I
U

0

.-- for O < s < n,

P! =  , pP =

0 V + 15 1 + zj

and
no+ZnWI ( + Exi ) y)0

-- B =e-(+Z~i)Y ((1' + 1)) 0.

r (no + Ln)

r
In the above discussion, Z represents I

1

Model III.

We consider another Markovian model which is described below:

(a) Customers arrive at a queueing system in batches of size u in

accordance to a Poisson process with parameter ).

(b) The service system consists of r counters. Customers are served

in batches of size ui  at the ith counter (i - 1,.,.,r). The service

times at the ith counter are i.i.d. exponential random variables with

parameter 11(i

(c) Service times at various counters are mutually independent and are

O_-, I

,r *.~
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independent of arrival times.

The busy period ends when for the first time any one counter

becomes empty, and without loss of generality let us assume it to be the

last counter.

Because of our observation in Model II, we will only deal with

the case r = 2. Denote by G3 - G3 (1 + u1 + u2 ; n0 , n1 ; k, t) the

probability that a busy period initially with I + u1 + u2  customers

consists of no  arrivals of batches of size u0 and n1 batches served

at the first counter, has a maximum queue length <k and has length

<t.

Letting n2 + 1 to represent the number of services at the sec-

ond counter during the busy period, it can be verified that

nu + Z - n u
(18) n2  0 u2 ].

For n0 , n1 and n2  to be meaningful, we assume k > max(ul, u2).

As in Modal I, we define the (ij) th departure instant as

that Instant which is either the ith departure instant at the first

counter and j departure instants at the second counter precede it or the

jth departure instant at the second counter and i departure instants

precede it. Without ambiguity, we may again denote by X the number

of arrivals after the (i,j)th departure instant and before the next

departure instant. The busy period will consist of n arrivals, n 1

batches served at the first counter and n2 + 1 batches served at the

second counter when

j i
(19) u i + U j-L< u0 T_ X a< u i+ U L + k for

0=o arno
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i - 0, 1,...,nl, j = 0, 2,

such that

• 2 n1" " ~ z z x _ - .E4 1:,, X- U

Representing an arrival by a unit on x -axis and a departure

from the ith counter by a unit on xi-axis, i 1 1, 2, the number of se-

quences of arrivals and departures satisfying (19) can be seen to be

equal to g2 (A (n) _B(a)) where

* + u 2 J -L+ k
.1 a (ij) min(n , r Uo

and

'.-.j~~ Ul + U2-
1 2 J X

b (ij) - max(, [ ]

i - 0, 1,...,n. and j - 0, 1,...,n 2 + 1.

Again, following the rest of the argument routinely we derive

* * n nI n 2+lt *
(20 G (A B(n)) 1 2.,~(20) - g2 (n)B 0 p, P2  f B dy for k > max(ul, ?2)

0

and n2 given by (18)

where

Po + 1.11 + P'2 V I +r2 + 2  p + +

and n+n+n2

B* -(X+Pi 1+ia2 )y ((X + Vl+ ' 2 )y) (A + I + V2)
-e (n + n1 + n2)

Note that when k < max(u , u2), several possibilities arise.

If k < min(u1, u2 ), one gets n1 - n 2 -0. On the other hand,

delWr
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nl -o i 2 > 1 n 1-<k<u 2 adn1 0if U 1 > u2 and

u2<k < ui. Discussion for the first counter to be empty is similar.

Thedervaton orthe general case is similar and is omitted.

It may be noted that the models in Mohanty (1972) are special

*cases of the model1s discussed in this section.
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5. Non-Markovian Queues

Two models in which either the input or the service-time

distribution is non-Markovian are considered. Setting inequalities

similar to the last section in terms of either arrival instant or de-

parture instant, an expression of the joint distribution involving the

m3imm workload in the first model and the maximum queue length in the

second is derived with the help of Proposition 3. The advantage of this

approach is mostly achieved when the non-Markovian distribution is de-

terminis tic.

Model IV.

The model is the same as Model II except that (b) is changed

to the following:

(b') Customers are served individually and the service times {p ji

of customers from the ith source are i.i.d. random variables with distri-

bution function H (i)(t) i - 1,.,r. Service times for each source are

*independent.

Consider only the case r = 2. Let G4 = .04 (y; nI , n2 ; z,t)
'p

be the probability that a busy period with initial work load y con-

sists of ni batches arriving from the ith source (i - 1, 2), has a

.- r ,,,m work load <z and has length <t.

Denote by I, the (i,j)th arrival instant (see Model II for

the definition) and by Tij the instant of the next immediate arrival

instant. A busy period with the given parameters in G must satisfy
4

the following inequalities:

V...
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0-- To _ y +.2

T1 < T01 < y + I Ila
10 - 1- - a-1

u 2

j-: !: tOI< T 0 1 < Y+ w 2 a

(21)

i uI  ju2

i - Tij < Y + Z ?1 + I ! 2a
r.". a=l a 1

q-.

-._ But for all (i,j) . is related to z as follows:

iu1  Ju2

- .jj +  *1a + Z *2a < z.
a-i -i a -

Therefore (21) becomes
0<'.<y

, "'"0 < T < y
-00-

iu1  j u2  iuI 1 u2

(22) y- z + pl+ E *2+ <Tj < y +  la + 2a
a-i a-i a=l ai

L- O'""nl" " O'...,n 2 ' (iJ) # (0.0).

. (Notice the similarity between (14) and (22).)

Under the condition that there are ni arrivals from the

ith source (i - 1, 2) during a busy period of length t, Tij's form

two independent sets of order statistics from the uniform distribution

over (O,t), the joint p.d.f. of which is

= n l .' n t

(23) nl+n2

n 1+2

~4*q
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Represent the arrival time on x -axis followed by a unit

on x -axis if the arrival is from the ith source. Then the sequences

E.. of arrival instants of a busy period are represented by a set of paths

in Proposition 3 each of which has the weight (23). Given the length

of the busy period to be x, the upper and lower restrictions

A (n) and Bl(n) of the set are given by

iu 1  iu2
::.:::. a(i j)  =min(x, y + 1 : l +  I 2a

1a-i a-i

and

iu1  iu2

bl(i,j) =max(O, y - z + Z + E
a-i ~la+~j2a)

i 0 0,..., and j 0
J '" 1 ... n2

Therefore, given there are ni batches of arrival from the ith

4"." source (i - 1, 2) and
.*

(24) y + Z 4)la + I-  2a " x,

a-l a-l

the probability of the busy period is

(25) C 1 n2  E *(

, : x

, where Ex stands for the conditional expectation taken over { la
{ 2la

and subject to the condition (24).
2a

Now it is a matter of routine argument as before to establish

A ! ! ''''°' e " .-.-. ,.' '; '" ' e ¢ " - v N .% '' "", : '""""' - .,.-i ""''' '''-L': ''' ': % - ''''; " -? '



22-

that

n P'~.1 2
t -(AI+A 2 )x n +n 1 A2  d (1 ) ("xy)*H( 2 )

(29 f C e x 1 dH.XY(20 4
y ~1'2 1 1 2 2

where H(i)  is the nth convolution of H with itself and * repre-
n

sents the convolution operator.

For any general service time distribution R(i) expression

(26) seems to be unwieldy. However, if the service times are

deterinistic, na-aiy, the service time for the customer from the ith

source is ai i - 1, 2), then the probability that a busy period

having the same specifications as in G4  except that it has length

t - y + alul + 2 u2 n 2  is

* -(Al+A2 ) t nI  n2

- (2-7) g2 (A(_pn)13,Cn)) e 12 l A 2

where the specialized values of restrictions are given by

a (ij) = min(tr y + aluli + a22J)

.".. Model V.

".-, It is characterized by Model III except that (a) is

S.

~modified as follows:

e, (a') Customers arrive one at a time at a queueing system. Let

.

ann

..

denote the arrival instant of the nth customer. The interarrival times

Jn - I n x - 1, 2,... are i.i.d. random variables with

distribution function X(t).
C,

S.

.SF..- o. >,? ,:' .-. sj. - .- . " ,, y ". -:--... """ L"
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Assume that the busy period ends when the first counter is

empty. For r 2, let G5  G5 ( + u+u 2 ; nI + 1, n2 ; k, t) be

the probability that a busy period initially with k. + ul +

customers consists of serving n1 + 1 batches .t the first counter,

n batches at the second, has a maxinum queue length <k and has

length <t.

Without any confusion, we may denote by Tj the (i,j)th

departure instant (see Model III for definition) and by Ti. the in-

stant of the next i=mediate departure after the (i,j)th departure in-

stant. A busy period with the constraints of G satisfies the
5

.P. following inequalitiest

(28).' _ _j < j< iul1+ Ju 2+k+l-Z

where u+j u_ ij

for i - 0, I,...,n, j -0, l,...,n 2 , (i,j) [ 1(0,0), (nl, n2) }.

If we fix the length of the busy period to be equal to x, we have

Tn1+l' n2 = T U x.

Under the condition that there are n1 + 1 departures from

the first counter, n2  from the second during the busy period of length

x, the joint p.d.f. of T 's isTAi i s

l' 2

.n

I ~~~~~~~~~~~~~~~~~~~.......... ...... .. .. ,,- .,, -.---....-..... .....-.... ,._ i......-.-,...'2.
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Represent the departure time on x -axis followed by a unit

on x.-axis if the departure is from the ith counter. The sequences of

departure instants become a set of paths in Proposition 3, the upper

and lower restrictions a and B2 being

a2(i,j) f min(x, iul+ju2 +k+lk)

and

b2(i,j)JU 2 _

1f0, 1,...,n 1  and j 2 0, 1,...,n

Therefore, given -here are nI + I batches of departure from the

first counter and n 2 batches from the second and the busy period

is of length x, the conditional probability of the busy period is

n1 ! n7. *
(29) D E [(A(n) B n)):;/. ' nl x (g2 [(2C (-n 2 (-)

the expectation being over {} subject to the condition that the

busy period is of length x.

The busy period is of length x is equivalent to

+ C = x, where N = niu 1 + (n 2- 1)u - Z and a is the time between

the Nth arrival and the last departure. Thus

. n1 .n 2  o

NN being the Nth convolution of M with itself.

When the interarrival times are deterministic, i.e.

.- -.
•

.'*



- 25 -

- *n- = 1 (say), the probability that a busy period having the same

.-specifications as in G except that it has length t is
G5

°-0I -i+P2 t n +1 n2(31) g2 (A2(n)IB 2(n)) e 
1 2  1 2

where the specialized values of the restrictions are given by

a2 (ij) = min(t, iu! + ju2 + k + 1 - Z)

" and

b2 (i,j) = max(O, iu, + ju2 - Z).

*-*_:
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